If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+27X-13500=0
a = 1; b = 27; c = -13500;
Δ = b2-4ac
Δ = 272-4·1·(-13500)
Δ = 54729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{54729}=\sqrt{9*6081}=\sqrt{9}*\sqrt{6081}=3\sqrt{6081}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{6081}}{2*1}=\frac{-27-3\sqrt{6081}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{6081}}{2*1}=\frac{-27+3\sqrt{6081}}{2} $
| 10-8a=2+8+5a-13a | | 3(w+17)=-3 | | -5x6=45 | | |y-4|+12=27 | | 2/3x=4/13 | | 13z-15=14z-1 | | 4(5x-4)+x-1=88 | | 3w-15=27 | | ½4x2+10=82 | | 6x+2=72 | | 62500=(20+0.5x)+0.15(20+0.5x) | | 2w–w=16 | | -7+f=47 | | 2(a+4)÷5=12 | | 22x+(-3)=4 | | 1/2x+1=3 | | -15=v-1 | | -14-3x=-5x+8 | | -6s=-5–5s | | 2(a+4)÷5=14 | | 252=6(-6x-6) | | -10j=-9j–6 | | 2x+5/5+9=-(x-3) | | -5x-6=45 | | 6^2x+4=3^3х*2^х+8 | | 18m=1872 | | 5x+7/4=7.25 | | 8n2-26n+15=0 | | 4(a+4)=4a+12 | | 6^(2x+4)=3^3х*2^(х+8) | | -5x-5=75+0x | | -3/9x=-2 |